CD47 Regulates Collagen I-Induced Cyclooxygenase-2 Expression and Intestinal Epithelial Cell Migration
نویسندگان
چکیده
Increased epithelial cell expression of the cyclooxygenase-2 (COX-2) enzyme is a characteristic event of both inflammatory bowel disease and colon cancer. We here report the novel findings that collagen I-induced de novo synthesis of COX-2 in intestinal epithelial cells is inhibited by pertussis toxin (PTX) and by an inhibitory peptide selective for the heterotrimeric G alpha(i3)-protein. These findings could be explained by a regulatory involvement of the G-protein-dependent integrin-associated protein CD47. In support of this notion, we observed a collagen I-induced association between CD47 and alpha2 integrins. This association was reduced by a blocking anti-CD47 antibody but not by PTX or a control anti-beta2 antibody. Furthermore, a blocking antibody against CD47, dominant negative CD47 or specific siRNA knock down of CD47, significantly reduced collagen I-induced COX-2 expression. COX-2 has previously been shown to regulate intestinal epithelial cell adhesion and migration. Morphological analysis of intestinal cells adhering to collagen I revealed a co-localisation of CD47 and alpha2 integrins to non-apoptotic membrane blebs enriched in Rho A and F-actin. The blocking CD47 antibody, PTX and a selective COX-2 inhibitor, dramatically inhibited the formation of these blebs. In accordance, migration of these cells on a collagen I-coated surface or through a collagen I gel were significantly reduced by the CD47 blocking antibody, siRNA knock down of CD47 and the COX-2 inhibitor NS-398. In conclusion, we present novel data that identifies the G-protein-dependent CD47 protein as a key regulator of collagen I-induced COX-2 expression and a promoter of intestinal epithelial cell migration.
منابع مشابه
Salidroside regulates the expressions of IL-6 and defensins in LPS-activated intestinal epithelial cells through NF-κB/MAPK and STAT3 pathways
Objective(s): To reveal the detailed mechanism underlying the functions of salidroside on the inflammation of intestinal epithelial cells during IBD.Materials and Methods: Quantitative real-time PCR was employed to assess the expression of IL-6, IL-10, and α-defensins 5 and 6. ELISA assay was performed to measure the secretion of IL-6 and IL-10. MTT assay was used to determine the cell viabilit...
متن کاملCollagen IV regulates Caco-2 migration and ERK activation via alpha1beta1- and alpha2beta1-integrin-dependent Src kinase activation.
Our previous work indicates intestinal epithelial cell ERK activation by collagen IV, a major component of the intestinal epithelial basement membrane, requires focal adhesion kinase (FAK) and suggests FAK and ERK may have important roles in regulating intestinal epithelial cell migration. We therefore sought to identify FAK downstream targets regulating intestinal epithelial cell spreading, mi...
متن کاملProstanoids mediate the protective effect of trefoil factor 3 in oxidant-induced intestinal epithelial cell injury: role of cyclooxygenase-2.
Trefoil factors are small peptides found in several mammalian tissues including gut, respiratory tract and brain. Their physiological function is not well understood. Among them, trefoil factor 3 (intestinal trefoil factor) is known to be cytoprotective in the gut. However, the molecular mechanism and secondary mediators of trefoil factor 3 action are not known. In the present study, we examine...
متن کاملRotavirus replication in intestinal cells differentially regulates integrin expression by a phosphatidylinositol 3-kinase-dependent pathway, resulting in increased cell adhesion and virus yield.
Changes in the interactions between intestinal cells and their surrounding environment during virus infection have not been well documented. The growth and survival of intestinal epithelial cells, the main targets of rotavirus infection, are largely dependent on the interaction of cell surface integrins with the extracellular matrix. In this study, we detected alterations in cellular integrin e...
متن کاملThe role of CD47 in neutrophil transmigration. Increased rate of migration correlates with increased cell surface expression of CD47.
CD47, a cell surface glycoprotein, plays an important role in modulating neutrophil (PMN) migration across endothelial and epithelial monolayers. Here we show that anti-CD47 monoclonal antibodies (mAbs) delay PMN migration across collagen-coated filters or T84 epithelial monolayers toward the chemoattractant formylmethionylleucylphenylalanine (fMLP). Despite delayed transmigration by anti-CD47 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2009